Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cannabis Cannabinoid Res ; 8(S1): S51-S61, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721988

RESUMO

Introduction: Minor cannabinoids are increasingly being consumed in oral formulations (i.e., edibles, tinctures) for medical and nonmedical purposes. This study examined the pharmacokinetics (PKs) of cannabinoids tetrahydrocannabivarin (THCV), cannabichromene (CBC), cannabinol (CBN), and delta-8-tetrahydrocannabinol (D8-THC) after the first and last oral dose during a 14-day administration period. Materials and Methods: Sprague-Dawley rats (N=6 animals/dose, 50% female) were given an assigned dose of one of four cannabinoids (THCV=3.2-100 mg/kg, CBC=3.2-100 mg/kg, CBN=1-100 mg/kg, or D8-THC=0.32-10 mg/kg) or vehicle (medium-chain triglyceride oil) through oral gavage once daily for 14 days. Blood was collected 45 min and 1.5, 3, and 24 h following the first dose (day 1) and the last dose (day 14) of repeated oral cannabinoid treatment for PK analysis. Outcomes of interest included time to maximum concentration (Tmax), maximum concentration (Cmax), and area under the concentration versus time curve (AUClast). Dose-normalized (DN) Cmax and DN AUClast were also calculated. Brain tissue was collected 24 h post-administration of the first (day 1) and the last (day 14) dose of each cannabinoid to determine concentrations in brain. Results: All cannabinoids tested were detectable in plasma after single and 14-day repeated dosing. DN Cmax and DN AUClast were highest for D8-THC, followed by CBC, CBN, and THCV. There was no sex difference observed in cannabinoid kinetics. Accumulation of D8-THC in plasma was observed after 14 days of administration. THCV levels in plasma were lower on day 14 compared to day 1, indicating potential adaptation of metabolic pathways and increased drug elimination. Cannabinoids were detected in brain tissue 24 h post-administration of the first and the last dose of 17-100 mg/kg THCV, 3.2-100 mg/kg CBC, 10-100 mg/kg CBN, and 10 mg/kg D8-THC. Conclusions: THCV, CBC, CBN, and D8-THC produced detectable levels in plasma and translocated to brain tissue after the first dose (day 1) and the last dose (day 14) of repeated oral dosing. Examination of PKs of these minor cannabinoids in blood and brain provides a critical step for informing target dose ranges and dosing schedules in future studies that evaluate the potential effects of these compounds.


Assuntos
Encéfalo , Plasma , Feminino , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Canabinol
2.
Cannabis Cannabinoid Res ; 8(S1): S25-S41, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721989

RESUMO

Introduction: Despite growing consumer interest and market availability, the safety of minor cannabinoids, generally present in low concentrations in Cannabis sativa L., is not well understood. Materials and Methods: Cannabichromene (CBC; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), cannabinol (CBN; 1, 3.2, 10, 17, 32, or 100 mg/kg-bw/day), delta-8-tetrahydrocannabinol (D8-THC; 0.32, 1, 3.2, or 10 mg/kg-bw/day), tetrahydrocannabivarin (THCV; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), and vehicle (medium-chain triglyceride oil) preparations were administered via oral gavage once daily for 14 days to Sprague Dawley rats. Changes in behavior, body weight, food consumption, clinical pathology, organ weights, body temperature, and thermal pain sensitivity (tail flick assay) were assessed. Select organ tissues were collected at terminal necropsy and fixed for histopathological examination. Results: No treatment-related deaths were observed throughout the study, and cannabinoids were generally well tolerated. While some significant trends in body weight differences from controls (increases and decreases) were observed, these occurred independently of food consumption. Overall, differences in serum chemistry and hematology parameters between cannabinoid groups and their respective control groups were considered to occur due to biological variation among rats. No treatment-related gross abnormalities were observed in examined organs. Significant changes in absolute and relative organ weights occurred primarily in males and were generally of negligible magnitude. There were no biologically significant histopathological observations. While pain tolerance was significantly improved in animals treated with D8-THC (3.2 and 10 mg/kg-bw/day, day 14), results across minor cannabinoids were inconsistent and warrant further study. Conclusion: Minor cannabinoids were well tolerated across 14 days of daily oral administration at the doses assessed. Modest, dose-dependent trends in relative organ weights and serum chemistry parameters warrant exploration at higher oral doses. These data will assist in dose selection for future studies investigating the long-term safety and effects of CBC, CBN, D8-THC, and THCV.


Assuntos
Canabinol , Limiar da Dor , Masculino , Ratos , Animais , Medição da Dor , Ratos Sprague-Dawley , Administração Oral , Peso Corporal
3.
Cannabis Cannabinoid Res ; 8(S1): S42-S50, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721992

RESUMO

Introduction: Cannabis contains a multitude of phytocannabinoids and terpenes in addition to its main psychoactive constituent, delta-9-tetrahydrocannabinol (D9-THC). It is believed that the combination of minor cannabinoids and terpenes with D9-THC may impact the subjective and physiological effects of D9-THC. In this study, select minor cannabinoids (cannabigerol [CBG], cannabidivarin [CBDV], cannabichromene [CBC], tetrahydrocannabivarin [THCV], cannabigerolic acid [CBGa], and cannabidiolic acid [CBDa]) and terpenes (beta-caryophyllene and linalool) were evaluated for their potential to decrease the interoceptive effects of D9-THC using drug discrimination methods. Materials and Methods: Male and female rats (n=16; 50% female) were trained to discriminate D9-THC from vehicle. Following training, D9-THC was administered 45 min pre-session, followed by administration of a minor cannabinoid or terpene (or vehicle) 15 min pre-session. CBG, CBDV, CBC, and THCV were administered at doses of 3-30 mg/kg; CBGa and CBDa were administered at doses of 10-100 mg/kg; beta-caryophyllene and linalool were administered at doses of 10-30 mg/kg. Percentage of D9-THC responding (%) was calculated to assess changes to D9-THCs interoceptive effects. Results: CBG, CBDV, CBC, THCV, CBGa, CBDa, beta-caryophyllene, and linalool had little effect on percent D9-THC responding in either sex. No compounds lowered percent D9-THC responding to 50% or below. THCV, CBC, CBDa, and beta-caryophyllene in combination with D9-THC decreased response rates compared with D9-THC alone. Conclusions: The minor cannabinoids and terpenes examined in the current study did not alter the discriminative stimulus effects of D9-THC. These results suggest that these compounds are unlikely to lower the psychoactive effects of D9-THC in human users.


Assuntos
Dronabinol , Terpenos , Humanos , Feminino , Masculino , Animais , Ratos , Terpenos/farmacologia , Dronabinol/farmacologia , Excipientes
4.
Cannabis Cannabinoid Res ; 8(S1): S11-S24, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721993

RESUMO

Background: Cannabis and its primary psychoactive constituent delta-9-tetrahydrocannabinol (D9-THC) produce biphasic, dose-dependent effects on anxiety. In addition to D9-THC, cannabis contains other "minor" cannabinoids and terpenes with purported therapeutic potential for the treatment of anxiety. Empirical data on potential therapeutic effects of these compounds is limited. The current study evaluated the effects of selected minor cannabinoids and terpenes in a battery of tests sensitive to anxiolytic and anxiogenic drugs. Methods: In Experiment 1, adult male Sprague Dawley rats (N=7-8/group) were administered acute oral doses of one of five minor cannabinoids: delta-8-tetrahydrocannabinol (D8-THC; 10 mg/kg), tetrahydrocannabivarin (32 mg/kg), cannabidiolic acid (32 mg/kg), cannabidivarin (32 mg/kg), and cannabigerol (100 mg/kg), or one of five terpenes: D-limonene (17 mg/kg), ⍺-pinene (100 mg/kg), ⍺-terpineol (10 mg/kg), bisabolol (100 mg/kg), and ß-caryophyllene (17 mg/kg), or vehicle (medium-chain triglycerides [MCT] oil). Ethyl alcohol was tested as an active comparator. Thirty minutes post-administration, the marble burying test, the three-chamber social interaction test, and the novelty-induced hypophagia test were completed; motor activity was assessed throughout testing. Experiment 2 examined the potential anxiolytic effects of minor cannabinoids when administered chronically; rats administered MCT oil or minor cannabinoids in Experiment 1 continued receiving once-daily doses for 21 days and were assessed using the same test battery after 7, 14, and 21 days of administration. Results and Conclusions: When compared to vehicle, acute administration of bisabolol and D-limonene increased the amount of food consumed and bisabolol-, D-limonene-, ⍺-pinene-, and ß-caryophyllene decreased percent time spent in the outer zone in the novelty-induced hypophagia test, suggestive of an anxiolytic effect. Only ethanol increased social interaction. After acute administration, anxiogenic effects in the marble burying test were observed for D8-THC, but not for other minor cannabinoids and terpenes. Throughout chronic administration, only D8-THC displayed anxiogenic effects in the novelty-induced hypophagia test. The other cannabinoids did not show anxiolytic or anxiogenic effects in any of the tests at the doses or times tested. The minor cannabinoids and terpenes did not impair or stimulate general motor activity. These data provide a foundation for future studies investigating cannabinoid/terpene interactions.


Assuntos
Ansiolíticos , Canabinoides , Cannabis , Alucinógenos , Masculino , Ratos , Animais , Terpenos/farmacologia , Ansiolíticos/farmacologia , Limoneno , Ratos Sprague-Dawley , Agonistas de Receptores de Canabinoides , Administração Oral , Terebintina , Carbonato de Cálcio , Canabinoides/farmacologia
5.
Regul Toxicol Pharmacol ; 142: 105425, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271419

RESUMO

Consumer use of cannabidiol (CBD) for personal wellness purposes has garnered much public interest. However, safety-related data on CBD in the public domain are limited, including a lack of quality studies evaluating its genotoxic potential. The quality of available studies is limited due to the test material used (e.g., low CBD purity) and/or study design, leading some global regulatory agencies to highlight genotoxicity as an important data gap for CBD. To address this gap, the genotoxic potential of a pure CBD isolate was investigated in a battery of three genotoxicity assays conducted according to OECD testing guidelines. In an in vitro microbial reverse mutation assay, CBD up to 5000 µg/plate was negative in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA, with and without metabolic activation. Testing in an in vitro micronucleus assay was negative in human TK6 cells up to 10-11 µg/mL, with and without metabolic activation. Finally, an in vivo micronucleus assay conducted in male and female rats was negative for genotoxicity up to 1000 mg/kg-bw/d. Bioanalysis of CBD and its primary metabolite, 7-carboxy CBD, confirmed a dose-related increase in plasma exposure. Together, these assays indicate that CBD is unlikely to pose a genotoxic hazard.


Assuntos
Canabidiol , Ratos , Masculino , Humanos , Feminino , Animais , Testes de Mutagenicidade , Canabidiol/toxicidade , Testes para Micronúcleos , Salmonella typhimurium/genética , Dano ao DNA , Escherichia coli/genética
6.
Food Chem Toxicol ; 176: 113786, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105390

RESUMO

An important data gap in determining a safe level of cannabidiol (CBD) intake for consumer use is determination of CBD's potential to cause reproductive or developmental toxicity. We conducted an OECD Test Guideline 421 GLP-compliant study in rats, with extended postnatal dosing and hormone analysis, where hemp-derived CBD isolate (0, 30, 100, or 300 mg/kg-bw/d) was administered orally. Treatment-related mortality, moribundity, and decreased body weight and food consumption were observed in high-dose F0 adult animals, consistent with severe maternal toxicity. No effects were observed on testosterone concentrations, F0 reproductive performance, or reproductive organs. Hepatocellular hypertrophy in the 100- and 300 mg/kg-bw/day groups correlated with hypertrophy/hyperplasia in the thyroid gland and changes in mean thyroid hormone concentrations in F0 animals. Mean gestation length was unaffected; however, total litter loss for two females and dystocia for two additional females in the high-dose group occurred. Other developmental effects were limited to lower mean pup weights in the 300 mg/kg-bw/d group compared to those of concurrent controls. The following NOAELs were identified for CBD isolate based on this study: 100 mg/kg-bw/d for F0 systemic toxicity and female reproductive toxicity, 300 mg/kg-bw/d for F0 male reproductive toxicity, and 100 mg/kg-bw/d for F1 neonatal and F1 generation toxicity.


Assuntos
Canabidiol , Gravidez , Ratos , Feminino , Masculino , Animais , Canabidiol/toxicidade , Reprodução , Testosterona , Glândula Tireoide , Nível de Efeito Adverso não Observado , Peso Corporal
7.
Food Chem Toxicol ; 176: 113778, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105391

RESUMO

Use of cannabidiol (CBD) in humans has increased considerably in recent years. While currently available studies suggest that CBD is relatively safe for human consumption, data from publicly available studies on CBD conducted according to modern testing guidelines are lacking. In the current study, the potential for toxicity following repeated oral exposure to hemp-derived CBD isolate was evaluated in male and female Sprague Dawley rats. No adverse treatment-related effects were observed following administration of CBD via oral gavage for 14 and 90 days at concentrations up to 150 and 140 mg/kg-bw/d, respectively. Microscopic liver and adrenal gland changes observed in the 90-day study were determined to be resolved after a 28-day recovery period. CBD was well tolerated at these dose levels, and the results of this study are comparable to findings reported in unpublished studies conducted with other CBD isolates. The current studies were conducted as part of a broader research program to examine the safety of CBD.


Assuntos
Canabidiol , Cannabis , Ratos , Animais , Masculino , Humanos , Feminino , Canabidiol/toxicidade , Ratos Sprague-Dawley , Cannabis/toxicidade , Administração Oral
8.
Cannabis Cannabinoid Res ; 6(6): 522-527, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33998871

RESUMO

Introduction: Despite widespread use of cannabidiol (CBD), no lifelong toxicity study has been published to date. Caenorhabditis elegans is often used in preclinical lifelong toxicity studies, due to an estimated 60-80% of their genes having a human ortholog, and their short lifespan of ∼2-3 weeks. In this study, we examined both acute and long-term exposure studies of CBD at physiologically relevant concentrations. Materials and Methods: Acute toxicity was determined by treating day 1 adults with a wide range of CBD concentrations (0.4 µM to 4 mM) and assessing mortality and motility compared to control animals. Thermotolerance was examined by treating adult animals with CBD (0.4 µM to 4 mM) and exposing them to 37°C for 4 h, and then scoring for the number of alive animals treated with CBD compared to controls. Long-term toxicity was assessed by exposing day 1 adults to 10, 40, and 100 µM CBD until all animals perished. Control animals had no active drug exposure. Results: We report both acute and long-term exposure studies of CBD to adult C. elegans at physiologically relevant concentrations. Acute toxicity results showed that no animal died when exposed to 0.4-4000 µM CBD. The thermotolerance study showed that 40 µM CBD, but not other treatment levels, significantly increased resistance to heat stress by 141% compared to the untreated controls. Notably, whole-life exposure of C. elegans to 10-100 µM CBD revealed a maximum life extension of 18% observed at 40 µM CBD. In addition, motility analysis of the same groups revealed an increase in late-stage life activity by up to 206% compared to controls. Conclusion: These results serve as the only CBD lifelong exposure data in an in vivo model to date. While further research into the lifelong use of CBD should be carried out in mammalian models, the C. elegans model indicates a lack of long-term toxicity at physiologically relevant concentrations.


Assuntos
Canabidiol , Termotolerância , Animais , Caenorhabditis elegans , Canabidiol/toxicidade , Humanos , Longevidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-32810571

RESUMO

Cannabis edibles are becoming more common in an increasingly diverse population of users, and the impact of first pass metabolism on cannabis's pharmacological profile across age and sex is not well understood. The present study examined the impact of age, sex and rodent species on the effects of intraperitoneal (i.p.) delta-9-tetrahydrocannabinol (THC) and its primary psychoactive metabolite, 11-OH-THC, in rodent models of psychoactivity and molecular assays of cannabinoid receptor type-1 (CB1) pharmacology. Like oral THC, i.p. THC also undergoes first pass metabolism. In both species and sexes, 11-OH-THC exhibited marginally higher affinity (~1.5 fold) than THC and both served as partial agonists in [35S]GTPγS binding with equivalent potency; 11-OH-THC exhibited slightly greater efficacy in rat brain tissue. In ICR mice, 11-OH-THC exhibited greater potency than THC in assays of catalepsy (7- to 15-fold) and hypothermia (7- to 31-fold). Further, 11-OH-THC was more potent in THC drug discrimination (7- to 9-fold) in C57Bl/6 J mice, with THC-like discriminative stimulus effects being CB1-, but not CB2-, mediated. THC's discriminative stimulus also was stable across age in mice, as its potency did not change over the course of the experiment (~17 months). While sex differences in THC's effects were not revealed in mice, THC was significantly more potent in females Sprague-Dawley rats than in males trained to discriminate THC from vehicle. This study demonstrates a cross-species in the psychoactive effects of i.p. THC across sex that may be related to differential metabolism of THC into its psychoactive metabolite 11-OH-THC, suggesting that species is a crucial design consideration in the preclinical study of phytocannabinoids.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Dronabinol/farmacologia , Tempo de Reação/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Caracteres Sexuais , Fatores Etários , Animais , Agonistas de Receptores de Canabinoides/metabolismo , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Dronabinol/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Roedores , Especificidade da Espécie
10.
Pharmacol Biochem Behav ; 193: 172918, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247816

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) possess high abuse liability and complex toxicological profiles, making them serious threats to public health. EG-018 is a SCRA that has been detected in both illicit products and human samples, but it has received little attention to date. The current studies investigated EG-018 at human CB1 and CB2 receptors expressed in HEK293 cells in [3H]CP55,940 competition binding, [35S]GTPγS binding and forskolin-stimulated cAMP production. EG-018 was also tested in vivo for its ability to produce cannabimimetic and abuse-related effects in the cannabinoid tetrad and THC drug discrimination, respectively. EG-018 exhibited high affinity at CB1 (21 nM) and at CB2 (7 nM), but in contrast to typical SCRAs, behaved as a weak partial agonist in [35S]GTPγS binding, exhibiting lower efficacy but greater potency, than that of THC at CB1 and similar potency and efficacy at CB2. EG-018 inhibited forskolin-stimulated cAMP with similar efficacy but lower potency, compared to THC, which was likely due to high receptor density facilitating saturation of this signaling pathway. In mice, EG-018 (100 mg/kg, 30 min) administered intraperitoneally (i.p.) did not produce effects in the tetrad or drug discrimination nor did it shift THC's ED50 value in drug discrimination when administered before THC, suggesting EG-018 has negligible occupancy of brain CB1 receptors following i.p. administration. Following intravenous (i.v.) administration, EG-018 (56 mg/kg) produced hypomotility, catalepsy, and hypothermia, but only catalepsy was blocked by the selective CB1 antagonist rimonabant (3 mg/kg, i.v.). Additional studies of EG-018 and its structural analogues could provide further insight into how cannabinoids exert efficacy through the cannabinoid receptors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacocinética , Carbazóis/farmacocinética , Locomoção/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Naftalenos/farmacocinética , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Transdução de Sinais/efeitos dos fármacos , Medicamentos Sintéticos/farmacocinética , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Carbazóis/farmacologia , AMP Cíclico/metabolismo , Dronabinol/farmacologia , Células HEK293 , Humanos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Naftalenos/farmacologia , Ratos , Ratos Long-Evans , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Medicamentos Sintéticos/metabolismo
11.
Drug Alcohol Depend ; 204: 107504, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31476643

RESUMO

BACKGROUND: Use of electronic cigarettes (e-cigarettes) has increased exponentially since their appearance on the U.S. market around 2007. To provide preclinical models of vaping that incorporate olfactory cues and chemosensory effects (including flavors) that play a role in human vaping behavior, the feasibility of using a modified e-cigarette device for delivery of aerosolized nicotine was examined in a nicotine discrimination procedure in mice. METHODS: Adult female and male C57BL/6 mice were trained to discriminate 0.75 mg/kg subcutaneous (s.c.) nicotine from saline. After determination of a s.c. nicotine dose-effect curve, aerosolized freebase nicotine and nicotine-containing tobacco products (i.e., non-flavored and Arctic Blast e-liquids) were evaluated. RESULTS: Nicotine (s.c.) dose-dependently substituted in mice of both sexes, although females showed less sensitivity and greater variability. By contrast, aerosolized nicotine, regardless of formulation, produced concentration-dependent increases up to maximum of 46-62% nicotine-associated responding. Brain nicotine concentrations for each sex were similar for s.c. 0.75 mg/kg nicotine and 30 mg/ml freebase nicotine. CONCLUSIONS: Mice of both sexes readily acquired s.c. nicotine discrimination, but females showed less sensitivity. Further, all three formulations of aerosolized nicotine produced increases in nicotine-like responding in mice of each sex. However, the maximum magnitude of these increases did not engender a similar degree of substitution as s.c. 0.75 mg/kg nicotine, despite similar brain concentrations of nicotine at 30 mg/ml aerosolized nicotine. Additional research is needed for determination of the reason(s); however, results here demonstrate initial feasibility for examination of the discriminative stimulus effects of vaped drugs such as nicotine.


Assuntos
Administração por Inalação , Discriminação Psicológica/efeitos dos fármacos , Injeções Subcutâneas , Nicotina/administração & dosagem , Animais , Encéfalo/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Aromatizantes/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais , Vaping/psicologia
12.
Neurotoxicology ; 73: 161-167, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30953678

RESUMO

A recent push to provide more translationally relevant preclinical models for examination of pharmacological mechanisms underlying inhaled substances of abuse has resulted in the development of equipment and methods that allows exposure of freely moving rodents to aerosolized psychoactive drugs. In the present study, synthetic cannabinoids (CP55,940, AB-CHMINACA, and AMB-FUBINACA) were administered intraperitoneally (i.p.) or aerosolized via a modified electronic cigarette device. Subsequently, the compounds were evaluated in adult male and female C57/Bl6 mice trained to discriminate i.p. 5.6 mg/kg Δ9-tetrahydrocannabinol (THC) for food reinforcement. When administered i.p., THC and AB-CHMINACA were equally potent at producing THC-like effects in both sexes, but CP55,940 and AMB-FUBINACA were more potent in males. Upon aerosol exposure, all compounds continued to produce THC-like effects in both sexes, with AMB-FUBINACA remaining the most potent. In contrast, aerosolized CP55,940 showed substantial decreases in potency in both sexes. Aerosolized nicotine did not substitute for THC in either sex. In females, aerosolized cumyl-4CN-BINACA produced concentration-dependent increases in responding on the THC-associated nosepoke. In addition, the effects of an active concentration of AMB-FUBINACA were reversed by rimonabant, suggesting CB1 receptor mediation. These results show that synthetic cannabinoids produce THC-like effects when injected i.p. or after aerosolization. This study adds to a growing literature suggesting that evaluation of abuse liability of substances via aerosol exposure is feasible and may provide a translationally relevant method that allows for investigation of factors important to the abuse of drugs which humans typically smoke or vape.


Assuntos
Comportamento Animal/efeitos dos fármacos , Canabinoides/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Cicloexanóis/administração & dosagem , Sistemas Eletrônicos de Liberação de Nicotina , Indazóis/administração & dosagem , Valina/análogos & derivados , Vaping , Administração por Inalação , Aerossóis , Animais , Canabinoides/síntese química , Cicloexanóis/síntese química , Feminino , Indazóis/síntese química , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Valina/administração & dosagem , Valina/síntese química
13.
Forensic Toxicol ; 37(1): 17-26, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30705707

RESUMO

PURPOSE: The use of novel synthetic cannabinoids as intoxicants continues in spite of associated health risks. These compounds are typically smoked or vaporized, but many synthetic cannabinoids contain thermally labile chemical moieties. This study investigated the thermal stability six carboxamide-type synthetic cannabinoids (CUMYL-PICA, 5F-CUMYL-PICA, AMB-FUBINACA, MDMB-FUBINACA, NNEI, and MN-18) in order to characterise potential user exposure to thermolysis products. METHODS: Compounds were heated sequentially to 200, 400, 600 and 800 °C using a thermolysis probe, and the resultant thermolysis products were analysed via GC-MS. A secondary analysis quantified thermolytically generated cyanide via LC-MS/MS. RESULTS: All six synthetic cannabinoids underwent thermal degradation when heated above 400 °C, and released a variety of potentially toxic products, including toluene, naphthalene, and 1-naphthalamine. Compound-specific degradants were tentatively identified together with a general degradative pathway for carboxamide-type synthetic cannabinoids, which proceeds via indole- or indazole-amide formation and subsequent dehydration to an indole- or indazole-carbonitrile. This degradative pathway culminated in the thermolytic liberation of cyanide, in amounts up to 27 µg per mg of starting material. CONCLUSIONS: People who smoke carboxamide-type synthetic cannabinoids are likely to be exposed to range of potentially toxic thermal degradants, including cyanide. These degradants could have significant health impacts in human users.

14.
Neuropharmacology ; 137: 133-140, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758385

RESUMO

Edible cannabis-infused products are an increasingly popular method of using cannabis in the United States. Yet, preclinical research to determine mechanisms underlying abuse of Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, has focused primarily on the effects of parenteral administration. The purpose of this study was to examine the rewarding and aversive effects of oral THC in a novel rodent voluntary ingestion model. Adult male and female Sprague Dawley rats were given access to sucrose-sweetened solutions during daily sessions. A range of THC concentrations, each paired with a unique flavor previously tested alone, was introduced into these solutions for four-session exposure periods and drinking volumes were measured. Injected (i.p.) THC doses were also paired with unique flavors to compare the effects of route of THC administration on drinking. Introduction of THC into sucrose solutions dose-dependently decreased drinking upon initial exposure, though drinking generally increased in subsequent sessions. By contrast, i.p. THC produced sustained dose-dependent decreases in drinking in rats of both sexes. Subsequent exposure to paired flavors in the absence of THC resulted in further decreases in drinking, suggesting route-specific aversion. Additional testing using saccharin-sweetened solutions in a two-bottle choice paradigm was also conducted, with THC producing sustained dose-dependent decreases in drinking after initial exposure in rats of both sexes. Though self-administration of ingested THC was not demonstrated, evidence of route-specific THC aversion was observed, which suggests that certain routes and/or rates of THC administration may mitigate some of its aversive effects.


Assuntos
Dronabinol/administração & dosagem , Dronabinol/efeitos adversos , Psicotrópicos/administração & dosagem , Psicotrópicos/efeitos adversos , Reforço Psicológico , Administração Oral , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Comportamento Alimentar , Feminino , Masculino , Distribuição Aleatória , Ratos Sprague-Dawley , Autoadministração , Volição
15.
J Med Chem ; 61(10): 4370-4385, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29688015

RESUMO

Type 1 cannabinoid receptor (CB1) antagonists have demonstrated promise for the treatment of obesity, liver disease, metabolic syndrome, and dyslipidemias. However, the inhibition of CB1 receptors in the central nervous system can produce adverse effects, including depression, anxiety, and suicidal ideation. Efforts are now underway to produce peripherally restricted CB1 antagonists to circumvent CNS-associated undesirable effects. In this study, a series of analogues were explored in which the 4-aminopiperidine group of compound 2 was replaced with aryl- and heteroaryl-substituted piperazine groups both with and without a spacer. This resulted in mildly basic, potent antagonists of human CB1 (hCB1). The 2-chlorobenzyl piperazine, 25, was found to be potent ( Ki = 8 nM); to be >1000-fold selective for hCB1 over hCB2; to have no hERG liability; and to possess favorable ADME properties including high oral absorption and negligible CNS penetration. Compound 25 was tested in a mouse model of alcohol-induced liver steatosis and found to be efficacious. Taken together, 25 represents an exciting lead compound for further clinical development or refinement.


Assuntos
Álcoois/toxicidade , Antagonistas de Receptores de Canabinoides/farmacologia , Fígado Gorduroso/tratamento farmacológico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Antagonistas de Receptores de Canabinoides/farmacocinética , Fígado Gorduroso/induzido quimicamente , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade , Distribuição Tecidual
16.
J Pharmacol Exp Ther ; 365(2): 437-446, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29549157

RESUMO

Synthetic cannabinoids are a class of novel psychoactive substances that exhibit high affinity at the cannabinoid type-1 (CB1) receptor and produce effects similar to those of Δ-9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis. Illicit drug manufacturers are continually circumventing laws banning the sale of synthetic cannabinoids by synthesizing novel structures and doing so with little regard for the potential impact on pharmacological and toxicological effects. Synthetic cannabinoids produce a wide range of effects that include cardiotoxicity, seizure activity, and kidney damage, and they can cause death. Six synthetic cannabinoids, recently detected in illicit preparations, MMB-FUBINACA, MDMB-FUBINACA, CUMYL-PICA, 5F-CUMYL-PICA, NNEI, and MN-18 were assessed for: 1) receptor binding affinity at the human CB1 and human CB2 receptors, 2) function in [35S]GTPγS and cAMP signaling, and 3) THC-like effects in a mouse drug discrimination assay. All six synthetic cannabinoids exhibited high affinity for human cannabinoid receptors type-1 and type-2 and produced greater maximal effects than THC in [35S]GTPγS and cAMP signaling. Additionally, all six synthetic cannabinoids substituted for THC in drug discrimination, suggesting they probably possess subjective effects similar to those of cannabis. Notably, MDMB-FUBINACA, a methylated analog of MMB-FUBINACA, had higher affinity for CB1 than the parent, showing that minor structural modifications being introduced can have a large impact on the pharmacological properties of these drugs. This study demonstrates that novel structures being sold and used illicitly as substitutes for cannabis are retaining high affinity at the CB1 receptor, exhibiting greater efficacy than THC, and producing THC-like effects in models relevant to subjective effects in humans.


Assuntos
1-Naftilamina/análogos & derivados , Canabinoides/farmacologia , Indazóis/farmacologia , 1-Naftilamina/farmacologia , Animais , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Drogas Ilícitas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Valina/análogos & derivados , Valina/farmacologia
17.
Neuropharmacology ; 134(Pt A): 73-81, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113898

RESUMO

Diversion of synthetic cannabinoids from the lab to drugs of abuse has become increasingly prevalent in recent years. Moreover, as earlier synthetic cannabinoids were banned, manufacturers introduced a new supply of novel compounds to serve as replacements. Hence, the chemical diversity of synthetic cannabinoid analogs has also rapidly increased. The present study examined 8 new synthetic cannabinoids: AM-1220, AM-2232, AM-2233, AM-679, EAM-2201, JWH-210, JHW-251, and MAM-2201. Each compound was assessed for binding affinity and functional activation of CB1 and CB2 receptors, and pharmacological equivalence with Δ9-tetrahydrocannabinol (THC) in THC drug discrimination. All compounds bound to and activated CB1 and CB2 receptors, although efficacy at the CB2 receptor was reduced compared to that for the CB1 receptor. Similarly, all compounds stimulated [35S]GTPγS binding through the CB1 receptor, and all compounds except AM-1220 and AM-2233 stimulated [35S]GTPγS binding through the CB2 receptor. Furthermore, these compounds, along with CP55,940, substituted for THC in THC drug discrimination. Rank order of potency in drug discrimination was correlated with CB1 receptor binding affinity. Together, these results suggest that all test compounds share the THC-like subjective effects of marijuana. Interestingly, the most potent compounds in CB1 binding in the present study were also the compounds that have been found recently in the U.S., MAM-2201, EAM-2201, JWH-210, AM-2233, and AM-1220. These results indicate that the evolution of the synthetic cannabinoid drug market may be focused toward compounds with increased potency. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Drogas Desenhadas/farmacologia , Discriminação Psicológica , Receptores de Canabinoides/metabolismo , Animais , Agonistas de Receptores de Canabinoides/química , Relação Dose-Resposta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Trítio/farmacocinética
18.
Drug Test Anal ; 10(1): 137-147, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28834241

RESUMO

In 2014 and 2015, synthetic cannabinoid receptor agonists NNEI (N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide) and MN-18 (N-1-naphthalenyl-1-pentyl-1H-indazole-3-carboxamide) were detected in recreationally used and abused products in multiple countries, and were implicated in episodes of poisoning and toxicity. Despite this, the pharmacokinetic profiles of NNEI and MN-18 have not been characterized. In the present study NNEI and MN-18 were incubated in rat and human liver microsomes and hepatocytes, to estimate kinetic parameters and to identify potential metabolic pathways, respectively. These parameters and pathways were then examined in vivo, via analysis of blood and urine samples from catheterized male rats following intraperitoneal (3 mg/kg) administration of NNEI and MN-18. Both NNEI and MN-18 were rapidly cleared by rat and human liver microsomes, and underwent a range of oxidative transformations during incubation with rat and human hepatocytes. Several unique metabolites were identified for the forensic identification of NNEI and MN-18 intake. Interestingly, NNEI underwent a greater number of biotransformations (20 NNEI metabolites versus 10 MN-18 metabolites), yet parent MN-18 was eliminated at a faster rate than NNEI in vivo. Additionally, in vivo elimination was more rapid than in vitro estimates. These data highlight that even closely related synthetic cannabinoids can possess markedly distinct pharmacokinetic profiles, which can vary substantially between in vitro and in vivo models.


Assuntos
1-Naftilamina/análogos & derivados , Canabinoides/metabolismo , Indazóis/metabolismo , Metaboloma/fisiologia , Microssomos Hepáticos/metabolismo , 1-Naftilamina/química , 1-Naftilamina/metabolismo , Animais , Canabinoides/química , Hepatócitos/metabolismo , Humanos , Indazóis/química , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
19.
Neuropharmacology ; 125: 365-375, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803965

RESUMO

While allosteric modulators of the cannabinoid type-1 receptor (CB1) continue to be developed and characterized, the gap between the in vitro and in vivo data is widening, raising questions regarding translatability of their effects and biological relevance. Among the CB1 allosteric modulators, PSNCBAM-1 has received little attention regarding its effects in vivo. Recently, pregnenolone was reported to act as an allosteric modulator of CB1, blocking THC's effects in vitro and in vivo, highlighting the potential of CB1 allosteric modulators for treatment of cannabis intoxication. We investigated the pharmacological effects of PSNCBAM-1 and two structural analogs, RTICBM-15 and -28, as well as pregnenolone, in both signaling and behavioral assays including [35S]GTPγS binding, the cannabinoid tetrad and drug discrimination. While the CB1 allosteric modulator PSNCBAM-1 attenuated THC-induced anti-nociception and its structural analog RTICBM-28 reduced THC's potency in drug discrimination, most cannabinoid effects in mice were unaffected. In contrast to the mouse studies, PSNCBAM-1 and analogs insurmountably antagonized CP55,940- and THC-stimulated [35S]GTPγS binding and exhibited negative binding cooperativity with [3H]SR141716 with similar apparent affinities. Notably, RTICBM-28, which contains a cyano substitution at the 4-chlorophenyl position of PSNCBAM-1, exhibited enhanced binding cooperativity with CP55,940. In contrast to previous findings, pregnenolone did not block THC's effects in drug discrimination or [35S]GTPγS. These data further highlight the difficulty in translating pharmacological effects of CB1 allosteric modulators in vivo but confirm the established pharmacology of PSNCBAM-1 and analogs in molecular assays of CB1 receptor function.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Cicloexanóis/farmacologia , Dronabinol/farmacologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Regulação Alostérica , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Discriminação Psicológica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Piperidinas/farmacologia , Pregnenolona/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto
20.
Eur J Pharmacol ; 814: 196-206, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28844873

RESUMO

Tobacco products are some of the most commonly used psychoactive drugs worldwide. Besides nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation of these constituents and their contribution to tobacco dependence is less well developed than for nicotine. The present study evaluated the nucleus accumbens dopamine-releasing properties and rewarding and/or aversive properties of nicotine (0.2-0.8mg/kg), cotinine (0.5-5.0mg/kg), anatabine (0.5-5.0mg/kg), and myosmine (5.0-20.0mg/kg) through in vivo microdialysis and place conditioning, respectively, in adult and adolescent male rats. Nicotine increased dopamine release at both ages, and anatabine and myosmine increased dopamine release in adults, but not adolescents. The dopamine release results were not related to place conditioning, as nicotine and cotinine had no effect on place conditioning, whereas anatabine and myosmine produced aversion in both ages. While the nucleus accumbens shell is hypothesized to play a role in strengthening drug-context associations following initiation of drug use, it may have little involvement in the motivational effects of tobacco constituents once these associations have been acquired. Effects of myosmine and anatabine on dopamine release may require a fully developed dopamine system, since no effects of these tobacco alkaloids were observed during adolescence. In summary, while anatabine and myosmine-induced dopamine release in nucleus accumbens may play a role in tobacco dependence in adults, the nature of that role remains to be elucidated.


Assuntos
Alcaloides/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Envelhecimento/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...